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The problem of controlling the position at the tip of a #exible cantilever beam to follow
a command signal is considered, by using a pair of piezoelectric actuators at the clamped
end. The beam is lightly damped and so the natural transient response is rather long, and
also since the sensor and actuator are not collocated, the plant response is non-minimum
phase. Two control strategies were investigated. The "rst involved conventional PID control
in which the feedback gains were adjusted to give the fastest closed-loop response to a step
input. The second control strategy was based on an internal model control (IMC)
architecture. The control "lter in the IMC controller was a digital FIR device designed to
minimize the expectation of the mean square tracking error. In practice, such smart beams
could be exposed to temperature #uctuations and changes in geometry. The e!ect of these
variations on the stability was studied and it is shown that the need for robustness to such
variations leads to a limitation in the performance of an IMC controller. The improvement
in the stability robustness by incorporating control e!ort weighting into the cost function
being minimized was investigated, as was the incorporation of modelling delay in the design
of the IMC control "lter. The IMC controller designed for the beam was found to have much
reduced settling times to a step input compared with those of the PID controller while
maintaining good robustness to changes in temperature. However, the extremely low
damping of the experimental beam made it di$cult to implement an accurate plant model in
practice.
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1. INTRODUCTION

Recent developments in smart materials such as piezoelectric zirconate titanate (PZT)
ceramics and piezoelectric vinylidene #uoride (PVDF) polymer "lms enable actuators and
sensors to be integrated into smart structures, which can then be controlled actively [1, 2].
The applications of such piezoelectric transducers have been investigated for smart
structures for vibration rejection, using active vibration control (AVC), and sound radiation
control of vibrating structures, using active structural acoustical control (ASAC), etc. [1, 2].
A new approach to tip position control of a #exible cantilever beam using PZT actuators is
studied in this paper. This approach can be clearly distinguished from conventional
vibration rejection controls in that the actuator is driven so that the beam tip follows
a command signal. In practice, smart beams may be exposed to temperature #uctuations
and variations in their payload. These e!ects will change the response of the beam and so
could a!ect the stability and performance of a smart beam. Thus, the need to ensure robust
stability in the face of the uncertainty in temperature and load leads to some limitations in
the performance of a smart beam. Lightly damped #exible structures, such as the beam
considered here, can have a long transient response when moved suddenly. However, some
0022-460X/01/200767#25 $35.00/0 ( 2001 Academic Press
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mechanical systems consisting of #exible structures require high-speed and accurate
tracking capabilities, such as robot manipulators in spacecrafts. In order to overcome the
inherent long transient response of such structures, a feedforward control strategy could be
used. The feedforward controller should anticipate the inverse dynamics of the plant within
a speci"ed bandwidth. The problem is made more di$cult by the non-minimum phase
behaviour of the system response, caused by the non-collocation of sensor and actuator,
and the dispersive property of #exible structures. The non-minimum-phase zeros of the
system response mean that an exact stable inverse cannot be achieved by direct inversion.
A number of feedforward techniques have been developed to minimize the e!ect of unstable
zeros on tracking performance of #exible manipulators [3}5]. An alternative formulation is
presented here, in which a digital FIR "lter is designed to minimize the mean-square
tracking error. It is, however, well known that the performance of any feedforward strategy
is sensitive to changes in the response of the system under control.

An alternative control strategy would be to use feedback control. Conventional analogue
techniques, such as PID control, could be used, but the non-minimum phase behaviour
limits the maximum control gains before there is a danger of instability, resulting in a rather
long closed-loop transient response. A di!erent feedback controller architecture is
investigated here for the control of the #exible cantilever beam, which is known as internal
model control (IMC), as described for example by Morari and Za"riou [6]. The IMC
architecture uses an internal model of the response of the system under control, the plant,
and a control "lter that can be designed to meet the control objectives of good tracking
performance and robust stability. The IMC controller reduces to a feedforward system if the
plant dynamics are known perfectly [6] and thus provides a connection with the earlier
feedforward approach under nominal plant conditions. The robust stability of such
a feedback controller to changes in the plant response can be assessed using a generalization
of the complementary sensitivity function, which has a particularly simple form when IMC
is used. The stability robustness can be improved by incorporating some e!ort weighting
into the cost function being minimized [7]. It is shown that although the feedback nature of
the IMC controller can cause instability if the changes in the plant response are too large,
the performance of the closed-loop system is very much better than that of an entirely
open-loop, feedforward, system before this limit is reached. Another method of making the
feedforward controller into a closed-loop system would be to make it adaptive, and one
method of achieving this is also discussed.

In most of the previous position control systems for #exible beams electrical motors have
been the only actuator used, as for example, in references [3, 5]. In this paper, however,
a pair of integrated piezoceramic (PZT) actuators is used, which provide many attractive
features such as light weight, high sensitivity, large bandwidth and distributed properties [8, 9],
although only limited motion is possible. For the sensing of the beam's motion,
a non-contacting inductive position sensor was used. This sensor was chosen instead of an
accelerometer since it does not a!ect the beam's motion and it directly measures displacement.
A practical implementation of the IMC controller has also been investigated, which uses
a #oating-point 32-bit digital signal processor (DSP, TMS320C30), and the measured
closed-loop performance has been compared with the predicted by a theoretical model.

2. EXPERIMENTAL ARRANGEMENT AND THEORETICAL BEAM MODEL

2.1. EXPERIMENTAL ARRANGEMENT

The experimental #exible beam was 800 mm long (¸), 20 mm wide (B) and 1)5 mm thick
(t), and was constructed of aluminium strip, clamped at one end and free at the other as



Figure 1. (a) The #exible cantilever beam used in the experiments and (b) its frequency response (tip de#ection/
input voltage), in which the solid line is the experimental result and the dashed line is a simulation result. (c) The
measured step response of the experimental beam.
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shown in Figure 1(a). A pair of &&Morgan Matroc'' PZT 5H type [10] piezoceramic
actuators, which are each 100 mm long (¸

a
), 20 mm wide (B

a
), and 1 mm thick (t

a
), was

bonded on either side of the beam at the clamped end and driven out of phase so as to
generate a bending moment excitation. For the detection of the beam tip motion, an
inductive position sensor (Honeywell proximity sensor 924 series 30 mm) which gives
a linear sensitivity for the position control range of the beam was used. The frequency range
of interest was 0}100 Hz and the beam positioned vertically for the experiment. The input
voltage and the tip de#ection were measured with an HP3566A Signal Analyzer, and the
input signal to the piezoceramic actuator was ampli"ed to 100 V by a PCB AVC 790 series
power ampli"er.

An initial system identi"cation experiment was performed on the beam and Figure 1(b)
shows the measured frequency response, where the input is the voltage to the piezoactuator
and the output is the beam tip displacement. Four resonances were observed in the
frequency range of interest, at 2)37 Hz, 13)92 Hz, 37)25 Hz, and 67)44 Hz respectively. Their
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damping ratios were measured to be f
1
"0)0026, f

2
"0)0036, f

3
"0)00335, and

f
4
"0)0051. The phase response shows a steep phase changes of !1803 at each resonance

frequency and, the phase delay of this beam system can be de"ned [11] to be

q
p
(u)"!u(u)/u , (1)

where u is the frequency and u (u) is the phase change. Both q
p
(u) and u(u) are also

frequency dependent because the system is resonant. The average phase delay up to 100 Hz
is about 30 ms. Figure 1(b) also indicates that the plant is dispersive and non-minimum
phase, which is caused by the non-collocation of the actuator and sensor.

The measured steady state beam de#ection was about 1)25 mm for 100 V step input to the
piezoceramic actuators. The beam's response to a step input is shown in Figure 1(c), from
which the 95 and 99% settling times were measured to be about 125 and 196 s respectively,
emphasizing the very lightly damped nature of the beam.

2.2. DYNAMICS OF THE BEAM AND ACTUATOR

A uniform cantilever beam with length ¸ which has clamped}free ends boundary
conditions is considered and it is subjected to a harmonic bending moment M(x, t) at
x"¸

a
. The tip de#ection y (¸, t) of the beam is assumed by the superposition of the

individual #exural mode as

y (¸, t)"
=
+
n/1

B
n
(t)/

n
(¸), (2)

where B
n
(t) is the nth #exural modal amplitude and /

n
(¸) is the nth #exural mode shape at

the tip which is given in reference [12]. By considering the boundary conditions of the
cantilever beam, a receptance form for the tip de#ection due to the bending moment at
x"¸

a
can be derived as
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where k
n
, u

n
, f

n
are the nth #exural wavenumber, natural circular frequency, damping ratio

of the beam, respectively, and /@
n
(¸

a
) is the spatial derivative of /

n
(x) at x"¸

a
, and A and

o are the sectional area and the density of the beam respectively. A pair of piezoceramic
elements bonded on either sides of the beam can induce bending moments at both ends
(x"0 and ¸

a
) of the elements when they are driven out of phase. However, only the bending

moment at x"¸
a
will be applied to the beam because the beam is clamped at x"0. The

relationship between the bending moment M induced by a pair of piezoactuators and input
voltage < is given as [10]

M"a<, (4)

where the coe$cient a is the gain of the piezoceramic actuator. Thus, the relationship
between the input voltage < and the tip de#ection y (¸) or the transfer function of the
&&plant'' model can be written in the Laplace domain as

G(s)"
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, (5)
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where a
n
"/

n
(¸)/@

n
(¸

a
) and K"ak

n
/Ao¸ is the gain of the plant. The zeros of the plant

model G(s) depend on the coe$cients a
n
, which are determined by the phase relationship

between the command input and the position output of the each resonant mode. In other
words, the zeros, which have a direct e!ect on the overall stability of the control system
[13], are dependent on the values of the mode shapes and the spatial derivatives of the mode
shapes at ¸ (location of sensor) and ¸

a
(location of actuator). However, the poles are

independent of the locations of the sensor and actuator since they correspond to the natural
frequencies of the #exible beam system. The dashed line in Figure 1(b) is the frequency
response of the #exible beam system predicted by using equation (5). Later in the paper, the
e!ect of a small mass at the tip of the beam is discussed. The modal summation above was
again used to model this system, but with the modi"ed natural frequencies and mode
shapes, as described by Laura et al. [14].

3. CONTROLLERS

3.1. ANALOGUE FEEDBACK CONTROLLERS

The block diagram of an analogue position control feedback system is shown in
Figure 2(a), in which r (t) is the command signal, G(s) is the plant, y (t) is the output of the
plant, e (t) is the error signal, and u(t) is the control signal. One popular form of analogue
controller is proportional, integral and derivative (PID) control for which

H (s)"K
P
#

K
I

s
#K

D
s, (6)

where K
P

is the proportional gain, K
I
is the integral gain and K

D
is the derivative gain.
Figure 2. (a) Block diagram of an analogue position control feedback system. (b) Block diagram of IMC digital
feedback control system for setpoint tracking. (c) An equivalent feedforward system to the IMC feedback control
system when GK (z)"G (z).
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For a mechanical system such as the beam, the proportional term K
P

will provide
a bending moment input proportional to the tip displacement, and can thus be regarded as
a form of electronic sti!ness. The integral term ensures that the steady state tracking error is
zero [15], and the derivative term provides a bending moment proportional to the velocity
of the beam tip and can thus be thought of as providing active damping.

3.2. IMC FEEDBACK CONTROL

The internal model control (IMC) approach is a method of designing feedback control
systems by using the mathematical techniques developed for feedforward control. IMC can
transform a feedback position control system into a system resembling a feedforward
position control system. Consider the block diagram of a digital IMC controller for
a sampled-time single input, single output control system as shown in Figure 2(b). The
digital feedback controller H(z) contains an internal model GK (z) of the real physical plant
G(z) and the control "lter=(z). The frequency response of the entire feedback controller is,
thus

u (z)

r(z)!y (z)
"H (z)"

=(z)

1!=(z) GK (z)
. (7)

The response of the output y (n) of the entire feedback control system to the command signal
r(n) can also be expressed as

y (z)

r(z)
"

G(z)H (z)

1#G(z)H (z)
"

=(z)G(z)

1#=(z)[G (z)!GK (z)]
. (8)

If the plant model GK (z) is a perfect representation of the plant G(z) (i.e., G(z)"GK (z)) and
G(z) is stable, then the classical feedback system with controller H (z) is internally stable if
and only if =(z) is stable [6] in which case z(n) tends to zero in Figure 2(b) and the
equivalent block diagram becomes entirely feedforward as shown in Figure 2(c). The system
output y (n) is then=(z)G(z)r (n), and thus the complementary sensitivity function is equal
to=(z)G(z) in this case. Thus, if=(z) is the inverse of G(z), then the output y (n) will follow
the command signal r(n) perfectly. In practice this cannot be achieved with a stable=(z)
since G(z) is non-minimum phase and so a least-squares approximation to the inverse
control could be used.

The more general problem of calculating the optimum performance of the feedforward
system as shown in Figure 3(a) is outlined below, when the command signal r (n) is fed to an
FIR feedforward digital "lter=(z), with I coe$cients, whose output drives the digital plant
G(z) and the plant then produce the system output y (n). The desired signal d (n) is equal to
the command signal r (n) delayed by D samples. Such a modelling delay is not generally used
in control systems since the required signal may not be known in advance in all
applications, and to aid comparison with other feedback controllers in section 3, D will
initially be taken to be zero. In some applications, however, such as when the plant is
required to execute a repetitive motion for example, the required signal is known in
advance, and considerable improvements in performance can be obtained with a suitable
choice of D, which is known as the modelling delay in the signal processing literatures [16].

The error signal e (n) can be given by subtracting the system output y (n) from the desired
signal d(n) as

e (z)"d (z)!=(z)G (z)r(z). (9)



Figure 3. (a) Block diagram of a feedforward control system to track a setpoint command. (b) Rearrangement of
block diagram for the design of the optimal control "lter =(z).
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However, if the control "lter =(z) is "xed and is linear time invariant, the order of the
blocks G (z) and =(z) can be reversed, as shown in Figure 3(b), to generate a signal v(n)
which is equal to the command signal "ltered by the digital plant G(z). Since the control
"lter is a FIR "lter device the error signal can now be expressed [17] as

e(n)"d (n)!wTv (n), (10)

where w"[w
0
2w

I~1
]T, w

i
is the ith coe$cient of the control "lter =(z) and

v(n)"[v (n)2v (n!I#1)]T. Upon assuming that the reference signal is random each
w
i
can be adjusted to minimize a cost function J

1
equal to the expectation of square values

of the error signals e(n) and so

J
1
"E[e2 (n)]. (11)

The expectation of the squared error signals can now be written as

E[e2 (n)]"wTAw!2wTb#c, (12)

where c is the scalar E[d2(n)], b is the vector of cross-correlation function between v(n) and
d(n), b"E[v (n) d (n)] and A is a Toeplitz matrix of auto-correlation function of v as
A"E[v (n)vT(n)]. If A is not singular, the matrix equation can be solved for the optimal,
Wiener, set of "lter coe$cients wopt which will produce a minimum error signal as

wopt"A~1b. (13)

This Wiener "lter can then be readily calculated from the cross-correlation vector and the
auto-correlation matrix.

The numerical stability of the solution of equation (13) depends on the conditioning of the
matrix A, because this optimal Wiener solution depends on its inverse. The conditioning
may be improved by modifying the cost function to add a regularization term that is
proportional to the expectation of the squared values of the "lter coe$cients [7], so that

J
2
"E[e2 (n)]#bwTw, (14)

in which case the Hessian matrix becomes A"E[v (n)vT(n)#bI], when written in
Hermitian quadratic form, in which the coe$cient weighting or regularization parameter
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b improves the condition number of the A matrix to be inverted and I means an identity
matrix. Thus, the optimal set of coe$cients in equation (13) can be re-expressed as

wb,opt"ME[v (n)vT(n)#bI]N~1E[v (n) d(n)]. (15)

3.3. ROBUST STABILITY

The IMC architecture has an evident danger: that its stability may be extremely sensitive
to the accuracy of the plant model. H

=
control techniques [18] enable the robust stability of

the IMC position controller to be assessed analytically. For the design of a robustly stable
system which will not be unstable when the plant response changes within given bounds, the
uncertainty of the plant must be considered. If the uncertainty is expressed with
a multiplicative factor, the frequency response of the digital plant can be written as

G(e+uT)"[1#D
G
(e+uT )]G

0
(e+uT), (16)

where G
0
(e+uT) is the frequency response of the nominal plant, D

G
(e+uT) is the fractional

change in the plant frequency response, and ¹ is the sample time. The bound of the
magnitude of the multiplicative plant uncertainty is

DD
G
(e+uT)D(B(e+uT), (17)

where DD
G
(e+uT)D denotes the modulus of D

G
(e+uT) and the real but potentially frequency-

dependent quantity B (e+uT ) is the upper bound of the uncertainty. If the complementary
sensitivity function ¹

0
(e+uT) is de"ned as

¹
0
(e+uT)"

G
0
(e+uT )H(e+uT)

1#G
0
(e+uT)H(e+uT)

, (18)

then the condition for robust stability is guaranteed if

E¹
0
(e+uT)B (e+uT)E

=
(1, (19)

where E¹
0
(e+uT)B (e+uT)E

=
is the largest value of D¹

0
(e+uT)B(e+uT)D at any frequency.

Provided equation (19) is satis"ed, the control system will stay stable for any plant response
which satis"es equations (16) and (17). If IMC control is used with a plant model equal to
the nominal plant response, so that GK (e+uT)"G

0
(e+uT), then the condition for robust

stability can be expressed by using equations (7) and (18) as [6]

D=(e+uT)G
0
(e+uT)B (e+uT )D(1 for all u. (20)

If an e!ort weighting b is introduced into the cost function in equation (15), the
magnitude of the frequency response of the control "lter, D=(e+uT )D, will also tend to be
reduced, thus satisfying the condition for robust stability, equation (19) for higher values of
plant uncertainty, B(e+uT) and making the controller more robust.

4. CONTROL SIMULATION

4.1. INTRODUCTION

For the control simulation, the length of the analytic beam model was assumed to be
¸"723 mm for the prediction in order to match with the measured "rst natural frequency



Figure 4. Simulation of PID feedback control with plant uncertainty. (a) The e!ect of structured uncertainty
due to temperature changes on the frequency response of the #exible beam. (b) Step response of the closed-loop
system with the nominal plant (at ¹"203C). (c) Nyquist plot with plant uncertainty where the outermost line is
703C and the innermost line is !303C. (d) Frequency response of the PID controller.
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shown as the dashed lines in Figure 1(b). This can be justi"ed because of the sti!ening e!ect
of the piezoceramic actuators. The modal damping ratio f

n
used in simulation for the

prediction was taken from the experimental measurements.
In practice, smart structures with piezoelectric transducers may be exposed to signi"cant

temperature #uctuations. An analysis has thus been performed on the e!ect of the
temperature #uctuations on the response of the beam. In this study, in order to assess the
e!ect of such changes, or uncertainty, in the plant on the stability and performance of the
controller, temperature variations between !30 and 703C have been assumed in the plant
model, while the nominal temperature was 203C. Temperature changes will cause changes
in the value of piezoelectric constant d

31
of the PZT 5H and of the beam length. The value of

d
31

is about 2)74]10~10 N/m2 at the nominal temperature (203C); however, it varies to
about 3)20]10~10 N/m2 at 703C and about 1)95]10~10 N/m2 at !303C [10]. This
change of d

31
is proportional to change in the magnitude of the induced bending moment

M [9], which a!ects the gain of the plant frequency response, and the change of the beam
length a!ects the resonance frequencies of the plant. Figure 4(a) shows the e!ect of these
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temperature changes on the modelled plant response, and it can be seen that the change in
beam length gives only a small e!ect compared with that of the gain, since very little phase
change is observed in the plant frequency response. Figure 4(a) also shows that when the
temperature rises, the gain of the plant becomes larger and when the temperature falls, the
gain becomes smaller. In addition to these temperature variations, a small variable tip mass
has also been introduced (0}0)5% of the beam mass) to further investigate the stability of
the control system when the natural frequency of the plant is uncertain. The maximum tip
mass investigated (0)5% of the beam mass) resulted in a decrease in the "rst natural
frequency of about 0)023 Hz which is about 1% of the unperturbed "rst natural frequency.

In this section, simulation with three di!erent control strategies with a PID feedback
controller (see section 4.2), an IMC feedback controller using various conditions (see
sections 4.3}4.6), and an adaptive feedforward controller using "ltered-x LMS algorithm
(see section 4.7) will be discussed in detail. The summarized control simulation results,
presented in advance in Table 1, show the comparison of performance and stability on each
controller, where GM is a gain margin, PM is a phase margin and t

s
indicates a settling time.

4.2. PID CONTROL SIMULATION

In the PID feedback control simulation, an analogue controller with three gain terms
(K

P
"0)4, K

I
"1)6, and K

D
"0)0004) which were manually tuned to give the fastest step

response and adequate stability margins in experiment was considered. The PID control in
simulation showed a very high gain margin due to the lightly damping and a phase margin
of about 443, as shown in Figure 4(c). The stability was dominantly dependent on the
open-loop behaviour of the "rst resonance. 95 and 99% settling times in step response were
about 67 and 146 s, respectively, as shown in Figure 4(b). Figure 4(c) indicates the Nyquist
plot of the open-loop frequency response of the PID control, for various temperatures in
103C intervals from !30 to 703C. A rise in temperature causes the phase margin to fall from
about 44 (nominal, ¹"203C) to about 373 (perturbed, ¹"703C) as shown in Table 1. The
closed-loop step response of the PID feedback control is not signi"cantly a!ected by these
temperature changes of the beam. A tip mass variation between 0 and 0)5% of the beam
mass also had almost no e!ect on the stability and performance of the PID control as
summarized in Table 2. Figure 4(d) shows the frequency response of the PID controller
H(s), in which the integral action is clear below 0)1 Hz and the derivative action is evident
only near 100Hz.

4.3. IMC CONTROL SIMULATION WITH THE NOMINAL PLANT

For IMC control simulations, the plant was transformed into digital form with a sample
rate of 300 Hz by using the matched pole-zero method [15]. The digital IMC feedback
control was then simulated with the nominal plant, when G(z)"GK (z)"G

0
(z), which is

equivalent to the purely feedforward control illustrated in Figure 2(c). The optimal control
"lter=(z) was designed with a 200 coe$cients FIR "lter to minimize the mean square error
between the plant output and &&Brownian noise'' as a command signal. Brownian noise was
chosen because its power spectral density has the same form as the modulus squared
spectrum of a step function and it was generated by cumulatively summing a white-noise
signal, so that

r (n)"x
B
(n)"

n
+
i/1

x
W

(i), (21)



TABLE 1

Summary of control simulation results of a P¸D feedback controller, an IMC feedback
controller (with various conditions) and an adaptive feedforward controller ( ,ltered-x ¸MS)

Perturbed plant

Controller Stability Nominal plant Response Temperature (3C)

PID feedback Stable at GM"very high GM"very high 70
!30}#703C PM"443 PM"373

95% t
s
"67 s 95% t

s
"67 s

99% t
s
"146 s 99% t

s
"146 s

IMC feedback Stable at GM"6)5 dB GM"6)2 dB 40
(No D, No b) !30}#473C PM"38)03 PM"11)03

95% t
s
"0)10 s 95% t

s
"0)62 s

99% t
s
"0)62 s 99% t

s
"1)72 s

IMC feedback Stable at GM"6)5 dB GM"6)2 dB 40
(No D, b"10~7) !30}#473C PM"38)03 PM"10)93

95% t
s
"0)11 s 95% t

s
"1)73 s

99% t
s
"0)62 s 99% t

s
"2)14 s

IMC feedback Stable at GM"6)0 dB GM"4)1 dB 70
(D"100, No b) !30}#703C PM"60)03 PM"53)43

95% t
s
"0)42 s 95% t

s
"0)66 s

99% t
s
"0)42 s 99% t

s
"1)14 s

Adaptive Stable at Stability Stability 70
feedforward !30}#703C guaranteed guaranteed
("ltered-x LMS) 95% t

s
"0)55 s 95% t

s
"0)55 s

99% t
s
"21)14 s 99% t

s
"22)01 s

TABLE 2

Simulation results of the stability comparison of PID feedback and IMC feedback controls
when the plant is varied with its tip mass (0}0)5% of beam mass); IMC control ,lters are
designed with di+erent modelling delays D; O and X represent 00stable11 abd 00unstable11

respectively

Tip mass (per cent of beam mass)

Control 0% 0)1% 0)2% 0)3% 0)5%

PID feedback O O O O O
IMC feedback D"0 O O X X X

D"20 O O X X X
D"50 O O O X X
D"100 O O O O X

ACTIVE CONTROL OF FLEXIBLE SMART BEAM 777
where x
B
(n) is a Brownian noise sequence and x

W
(n) is a zero-mean white-noise sequence. In

general, a persistently exciting [19] input signal is used for the design of an optimal "lter
[17]. However, a tracking control "lter requires a good &&integration action'' to make
a system follow the command position and so Brownian noise, which is particularly
&&spectrally rich'' at low frequencies, provides a suitable training signal.



Figure 5. Simulation results for IMC feedback control with the nominal plant when G (z)"GK (z)"G
0
(z).

(a) Frequency responses of G
0
(z) (} }} }) and=(z) (0). (b) Frequency response of H(z). (c) Nyquist plot, in which

the &&*'' is the Nyquist point at (!1, 0). (d) Step response.
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The frequency response of=(z), the designed control "lter, is shown in Figure 5(a) and
represents the optimum stable form of the inverse dynamics of the plant, which has zeros
cancelling each resonance of the plant. The frequency response of the entire feedback
controller H (z) shown in Figure 5(b), and has a high gain integral action at the low-
frequency range, especially below the "rst resonance. The 95 and 99% settling times of the
closed-loop step response were 0)10 and 0)62 s, respectively, as shown in Figure 5(d) and
Table 1 (IMC feedback, No D, No b, for nominal plant). In spite of this fast settling, the IMC
controller still has a gain margin of about 6)5 dB and a phase margin of about 383, as can be
seen from the Nyquist plot at Figure 5(c).

4.4. IMC CONTROL SIMULATION WITH PERTURBED PLANTS

The stability and performance of the IMC controller for perturbed plant conditions due
to temperature variations were assessed by assuming that GK (z)"G

0
(z) and that the control

"lter=(z) was designed for the nominal plant. The simulation results show that the IMC
control is more sensitive than PID control. This is because the IMC control "lter=(z) is



Figure 6. Variation of the mean-square tracking error (MSE) for a step input due to the temperature changes of
the beam using three di!erent controllers.
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designed to invert the response of the nominal plant G
0
(z), whereas the PID controller has

a relatively #at frequency response. Figure 6 shows the variation of the mean square
tracking error (MSE) in the step response against temperature variation of the plant with
three di!erent controllers (PID, purely feedforward, and IMC). The performance of the PID
controller is almost una!ected by the temperature changes, although MSE is only about
!8 dB even for the nominal plant. The performance of the purely feedforward controller
quickly degenerates as the temperature changes, because the inverse of the nominal plant is
not well matched to perturbed plants. The feedback loop provided by the IMC controller
reduces this degeneration signi"cantly, and the MSE was changed by less than 1 dB for
temperature of !30 to about 473C. However, the disadvantage of closed-loop controller is
that it can become unstable if the response of the plant changes too much, whereas the
open-loop controller is unconditionally stable. The IMC controller becomes unstable if the
beam temperature is above about 483C, which is plotted in Figure 6 as having a very large
tracking error.

The way in which the IMC controller becomes less stable as the temperature rises is
shown in Figure 7. Figure 7(a) shows the feedforward responses of both G

0
(z)=(z) at

¹"203C (dashed line) and G(z)=(z) at ¹"403C (solid line) when the control "lter=(z)
was designed for the nominal plant. As shown in Figure 7(b), the Nyquist plot for the
perturbed plant is much closer to the Nyquist point, although the gain margin is only
reduced from 6)5 (nominal) to 6)2 dB (perturbed). The phase margin, however, has decreased
from about 38 (nominal) to about 113 (perturbed) as summarized in Table 1 for this
simulation (IMC feedback, No D, No b, for perturbed plant). The e!ect of this reduction of
gain and phase margins is to make the complementary sensitivity functions much larger at
the "rst resonance, as shown in Figure 7(c). The step response (99% settling time: 1)73 s),
however, is not greatly a!ected by this increase of temperature, as shown in Figure 7(d) and
Table 1. The stability robustness of the IMC controller with variations in beam tip mass is
again indicated, for D"0, in Table 2.



Figure 7. Comparison of the responses of the IMC feedback control for the nominal plant G
0
(z) (¹"203C,

}} } } ) and perturbed plant G (z) (¹"403C,0). (a) G
0
(z)=(z) and G (z)=(z). (b) G

0
(z)H(z) and G(z)H(z). (c) ¹

0
(z)

(nominal) and ¹(z) (perturbed). (d) Step responses.
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4.5. IMC CONTROL SIMULATION WITH CONTROL EFFORT FOR PERTURBED PLANTS

In order to increase the stability robustness, the IMC feedback controller could be
redesigned by adjusting the control "lter=(z) to minimize the modi"ed cost function J

2
in

equation (14), with control e!ort weighting b, as successfully applied to active noise control
systems [7, 20]. The value of b can be increased until the IMC feedback controller has the
required degree of robust stability, but this will inevitably degrade the closed-loop
performance. Thus, the trade-o! between the performance and robust stability of the IMC
feedback control is important in the design of the control "lter =(z).

Figure 8 illustrates the comparison of the IMC feedback control when control "lters are
either =b (z) with b"10~7 or =(z) without b for a perturbed plant (¹"403C). The
frequency responses of =b (z) and Hb (z) have a reduced modulus especially in the higher
frequencies, the stability was increased slightly (GM"6)5 dB, PM"10)93), but the step
response becomes slightly slower (95 and 99% settling times: 1)73 and 2)14 s) as shown in
Figure 8. Thus, the stability is only slightly more robust, in spite of the sacri"ce of the



Figure 8. The comparison of=b (z) with b"10~7 (0) and=(z) without b (} } } }) when the plant is perturbed
(¹"403C). (a)=b(z) and=(z). (b) G(z)=b (z) and G(z)=(z). (c) Hb (z) and H(z). (d) G (z)Hb (z) and G (z)H(z). (e) ¹b (z)
and ¹(z). (f ) Step responses.
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performance as summarized in Table 1 (IMC feedback, No D, b"10~7). For the nominal
plant, the control "lter =b(z) with b"10~7 gave 95 and 99% settling times of 0)11 and
0)62 s, respectively, without changes in gain margin and phase margin.



Figure 9. (a) The comparison of step responses by the IMC control "lters with di!erent modelling delays (D"0,
20, 50, and 100) for the nominal plant (¹"203C): , dealy"0; *, delay"20; }}, delay"50; }, delay"100.
(b) A comparison of step responses for perturbed plants (¹"!30 and 703C) and the nominal plant (¹"203C)
using the same control "lter =(z) designed with D"100: , !303C; *, 203C; } }, 703C.
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Further increases in b were found to make the perturbed control system become unstable,
and so the e!ort weighting parameter must be carefully chosen. Thus, the use of e!ort
weighting does not appear to be a useful way of making this position feedback control of the
#exible beam robust. This is because the stability of the IMC feedback control is mainly
determined by the response of the "rst natural frequency as shown in Figure 8(d).

4.6. IMC CONTROL SIMULATION WITH MODELLING DELAYS FOR PERTURBED PLANTS

A modelling delay in the desired signal, as shown in Figure 3, allows the design of the
control "lter =D(z) with a much smaller mean square tracking error (MSE). Figure 9(a)
shows that the step responses of the nominal plant with control "lters=D(z) designed for
modelling delays of D"0, 20, 50, and 100 samples. Apart from the overall delay of the plant
G(z), the control "lter designed with a modelling delay gave a faster settling than that
designed without D. A comparison of the step responses of the control "lter=D(z) (D"100)
for perturbed plants (at ¹"!30 and 703C) and the nominal plant is illustrated in
Figure 9(b). With a modelling delay of D"100 the IMC feedback control becomes stable
even for a perturbed plant at ¹"703C and is thus considerably made robust than the IMC
control with D"0. The step response with D"100 for a temperature of ¹"703C shows
an overshoot with a fast rise time at the initial stage, in contrast to a low temperature,
¹"!303C, which shows a fast rise time without an overshoot. The initial errors in step
responses for both cases occurred due to the action of feedforward path, when the IMC
feedback control was not e!ective. However, in both cases the error is gradually corrected
by the feedback action in IMC feedback structure.

The MSE for perturbed plant responses is plotted against temperature variation in
Figure 10 for various modelling delays. Figure 10 indicates that the IMC feedback control
becomes more robust and could provide good tracking performance when the modelling
delay is applied in the design of the control "lter =D(z).

Figure 11 compares the IMC control for the plant at ¹"703C when the control "lter is
either=D (z) (D"100, solid lines) or=(z) (D"0, dashed lines). The modulus of G(z)=D(z)
over the "rst natural frequency became less resonant, which appears as large circles in the



Figure 10. The mean-square tracking errors (MSE) of IMC feedback control against perturbed plants
(¹"!303C}#703C) with various modelling delays in the design of control "lter =(z).
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Nyquist plot shown in Figure 11(d). The entire feedback controller, HD(z), has a lower gain
by about 20 dB compared with H(z) in low frequencies. Thus, the unstable control system at
¹"703C with =(z) became stable with =D(z). The results for this simulation (IMC
feedback, D"100, No b) are summarized in Table 1.

The stability of the IMC controller using the control "lter designed with a modelling
delay has also been assessed for various tip masses. As can be seen from Table 2, an increase
of modelling delay D gives better stability. However, since the IMC control is based on an
internal nominal plant model, the IMC feedback control has less stability robustness than
that of PID control.

4.7. ADAPTIVE FEEDFORWARD TRACKING CONTROL

Another way of compensating for a changing plant response is to use an adaptive
feedforward control "lter. Such an arrangement for the setpoint tracking problem is
illustrated in Figure 12, in which the "lter is adapted using the "ltered-x LMS [16]
algorithm. In Figure 12, G(z) is the physical plant, which can vary with temperature, GK (z) is
the plant model at ¹"203C,=(z) is the adaptive FIR control "lter with 200 coe$cients,
z~D is a modelling delay included for generality, although in this case is D"0, r (n) is the
command signal, d (n) is the desired signal, y(n) is the plant output signal vL (n) is the "ltered
command signal and e (n) is the error signal. The update equation of the "ltered-x LMS
algorithm is given by

wn#1"wn#av; (n)e(n), (22)



Figure 11. The comparison of the responses of the IMC feedback control for a &&hot'' plant at ¹"703C when
the control "lters =D(z) and =(z) are designed both with (0) and without (} } }}) modelling delay of D"100
respectively. (a) =D (z) and=(z). (b) G (z)=D(z) and G(z)=(z). (c) HD(z) and H(z). (d) G(z)HD(z) and G(z)H (z).

Figure 12. Arrangement of "ltered-x LMS algorithm for the adaptive feedforward tracking control of the
#exible beam with plant uncertainty.
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where a is a convergence coe$cient and w is the vector of LMS adaptive "lter coe$cients.
For the tracking control of the #exible beam, the convergence coe$cient a chosen to be in
the range is expressed as

0(a(a
0
/IE[vL 2(n)], (23)



Figure 13. Simulation of adaptive feedforward control using the "ltered-x LMS algorithm for a #exible beam.
(a) Learning curves with three di!erent temperatures of ¹"203C (0), !303C () ) ) ) )), and 703C (} }} }). (b) Step
responses after adaptation at three di!erent temperatures at ¹"203C (top), !303C (middle) and 703C (bottom).
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where I is the number of adaptive "lter coe$cients and a
0
, representing the normalized

convergence coe$cient, is typically 10~6, because of the very large phase delays in the plant
at the "rst resonance.

The learning curves for the system with three di!erent temperatures of ¹"20, !30 and
703C are shown in Figure 13(a) and were not entirely "nished by 15]106 iterations for the
adaptation, because of the low value of a which caused slow convergence, and the MSE had
reached only about !20 dB. However, the learning curves of the three di!erent plants
showed similar convergence behaviour. Figure 13(b) illustrates the step responses after
adaptation for 15]106 iterations for the three di!erent plants. The settling times of the
three step responses are similar as summarized in Table 1 (adaptive feedforward). The
"ltered-x LMS adaptive "lter could provide a better performance than that presented with
even more iterations but at a sampling rate of 300 Hz, 15]106 iterations would take about
14 h in real time.

5. EXPERIMENTAL RESULTS

5.1. ANALOGUE PID FEEDBACK CONTROL

Two position-control experiments for the #exible beam were performed, with either an
analogue PID feedback controller or a digital IMC feedback controller. In the analogue
PID control experiment, the three control gains in equation (6) were determined by manual
tuning to be K

P
"0)4, K

I
"1)6 and K

D
"0)0004. Since the sign of K

D
is positive it will

provide extra damping for the "rst bending mode of the #exible beam, and thus will
decrease the settling time. However, it was found that if a value of K

D
is made too large, the

transient response of the beam is dominated by the second bending mode. Because of the
1803 phase shift between these two modes, as seen in Figure 1(b), a value of K

D
increasing

the damping of the "rst bending mode will decrease the damping of the second mode. Thus,
if K

D
is to large the second mode will e!ectively have a negative damping and the system

will become unstable. Although there has been a number of ad hoc tuning rates for the PID
controller such as Ziegler}Nicholas [15], most of which assume a well-damped plant
response, there is no analytic method of adjusting the three parameters to obtain the



Figure 14. Measured step response with analogue PID feedback control.
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shortest transient response. In this work, a trial and error approach was thus adopted to
obtain the exact values of the gains about their "nal settings. The measured frequency
response of the analogue PID feedback controller had an integration action as shown in
Figure 4(d), determined by the K

I
term, at very low-frequency range. The K

I
term was

chosen carefully because a higher K
I

can provide an improved steady state tracking
response but it can also cause a worse transient response. Figure 14 shows the measured
closed-loop step response with the analogue PID feedback control, which settles to within
95 and 99% of the command position at about 75 and 120 s respectively. The measured step
response is similar with the simulation result shown in Figure 4(b), but can be contrasted
with the measured step response without control (95 and 99% settling times are 125 and
196 s) in Figure 1(c). In contrast, the measured step response with the analogue PID
feedback controller shows that it follows the command gradually with limited overshoot
using an electronic sti!ness (by K

P
and K

D
of the controller) created by the piezoactuators.

It settles precisely to the command position by the action of the gain K
I
as can be seen from

Figure 14. The piezoactuator with the controller has worked to generate bending moments
used not only for the maintaining of the tip position but also for creating an electronic
sti!ness.

5.2. DIGITAL IMC FEEDBACK CONTROL

In the real-time IMC feedback control system, a digital signal processor (DSP) board
(Loughborough Sound Images TMS320C30 PC system board [21]) based on TI's
TMS320C30 (32-bit #oating point operation) [22] with 16-bit ADC (analogue to digital
converter)/DAC (digital to analogue converter) was used. The implementation #ow for the
digital IMC feedback control is illustrated in Figure 15. The digital plant model GK (z) for the



Figure 15. The implementation #ow of digital IMC feedback control for the #exible beam.
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sampled-time plant G(z) has been de"ned to include the responses of a DAC, an antialiasing
low-pass "lter, a power ampli"er, the physical #exible beam with a pair of piezoactuators,
a tip position sensor, a reconstruction low-pass "lter and an ADC. The sampling frequency
was 300 Hz and the cut-o! frequency in the low-pass "lters was 100 Hz. Thus, the plant
model GK (z) on which the digital design is based must contain the inherent time delay caused
by the DSP computation time and the low-pass "lters' delay, as well as the pure delay in the
non-minimum-phase #exible beam. The practical identi"cation of the digital plant model is
contained in step 1}3 of Figure 15. In &&step 1'' the input and output signals of the
sampled-time plant G(z) have been measured with the DSP board and at &&step 2 and 3''
MATLAB functions &&tfe'' and &&invfreqz'' were used for the parametric modelling of the
plant model GK (z). The calculated impulse response of GK (z) was more than 65 000 samples
long. Since such a long FIR "lter was beyond the capabilities of the DSP device, GK (z) was
instead implemented as an IIR "lter in the DSP board with 45 poles and 45 zeros. Since an
IIR "lter can be unstable, the stability of the designed GK (z) was veri"ed from its pole-zero
map. This stability monitoring has been important, since the plant to be controlled was very
#exible with low damping ratios, and the poles of the IIR plant model GK (z) were located
very near to the unit circle. In &&step 4'' the output of the actual plant G(z), y, and the IIR
plant model GK (z) output, yL , were compared to verify the precision of the designed GK (z). The
error between the two outputs could be caused by the change of the actual plant due to
temperature variation or unexpected ambient vibration transmitted to the beam set-up for
instance. This error could arise because it requires some time to calculate the IIR plant
model in a PC and to implement the IIR plant model to the DSP board after the
measurement at &&step 1''. If this error was too large, the identi"cation process was repeated.
The digital IMC control "lter =(z) was designed in &&step 5'' using o!-line computer



Figure 16. Measured step responses with a digital IMC position control. The control "lter was designed with
a Brownian noise input considering a modelling delay D. (a) D"0, (b) D"20, (c) D"50, (d) D"100.
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calculations as given in equation (13) using the plant model GK (z) and a Brownian noise
input, with various modelling delays of D"0, 20, 50, and 100, and was implemented as an
FIR device with 200 coe$cients in the DSP board. The control e!ort weighting b has not
been considered in the design of the control "lter =(z) since the simulation results have
already indicated that e!ort weighting is not a useful concept in the position control of very
lightly damped beams. After this design process, the complete real-time digital IMC
feedback control system, as shown in Figure 2(b), could be implemented with the DSP
board.

In the real-time control experiment, the IMC feedback control designed with these
modelling delays has been implemented. The upper and the lower graphs in Figure 16(a),
(b), (c), and (d) (when D"0, 20, 50 and 100, respectively), represent the measured real-time
closed-loop step responses from 0 to 10 000 samples (about 0}33 s) and 0}500 samples
(about 0}1)7 s) respectively. The closed-loop step response of the IMC feedback control
with no modelling delay (D"0) did not settle within 95% of command position even after
33 s, as shown in Figure 16(a). However, the step responses with modelling delays D showed
improved 95% settling times of 10)75, 10)93, and 2)60 s for D"20, 50 and 100, respectively,
but the beam did not settle to within 99% of the desired result within 33 s, as can be seen
from Figure 16(b)} (d). It should be noted, however, that 33 s is still short compared with the
196 s settling time of the beam itself, as shown in Figure 1(c).
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The long settling times shown in Figure 16 for real-time control were probably caused by
the misalignment in frequencies and magnitude di!erences between the anti-resonances of
the control "lter =(z) and the resonances of the actual plant response G(z); because the
plant model was not perfect, G(z)OGK (z). The misalignment at the "rst resonance frequency
was dominant in the measured closed-loop step response with a ringing at about 2)4 Hz, as
shown in Figure 16(a) when D"0. When D"100, the misalignment magnitude at the "rst
resonance frequency became less signi"cant but misalignments at the other resonances
became increased, as shown in Figure 16(d). Each of the measured closed-loop step
response in Figure 16 are quite similar to the calculated response in Figure 9(a) up to 500
samples.

The misalignment of the resonance frequencies of G(z) and the anti-resonance frequencies
of=(z) may have been caused by slight changes in the plant dynamics. The actual plant
dynamics G(z) could be perturbed not only by temperature variation but also by small
changes in the static geometry of the aluminium beam caused by plastic deformation by the
piezoelectric actuators. The variation of the plant model GK (z) over the course of these
experiments showed that the mean value of the "rst natural frequencies was 2)3763 Hz and
the standard deviation was 0)0018 Hz. This amount of variation in the "rst natural
frequency does not destabilize the control system, but can cause the observed ringing in the
closed-loop step response. This frequency misalignment problem can make the system
unstable if it is too large, as shown by the tip mass perturbation results in Table 2. The
system will only be stable if the error in the estimate of the natural frequency is less than
about half the bandwidth of the resonance. The condition of stability with an IMC position
control architecture for a #exible structure can thus be approximated by

D f
n
!f K

n
D(f

n
f
n
, (24)

where f
n
and f K

n
are the nth natural frequencies of the actual plant G(z) and plant model GK (z),

and f
n
is the nth damping ration of the actual plant. If f

1
and f

1
are 2)3700 and 0)0026 Hz,

then the frequency di!erence D f
1
!f K

1
D should be less than about 0)006 Hz for stability. For

a stable IMC controller it also is necessary to use a minimum FFT resolution in &&step 2 and
3'' in the identi"cation process which is smaller than D f

n
!f K

n
D so that

N
FFT

*f
s
/f
n
f
n
, (25)

where f
s
is the sample rate and N

FFT
is the number of points in the FFT process. In practice

N
FFT

"100 000 was used.
From the above analysis it could be concluded that the precision of the plant model GK (z)

determines not only the stability but also the closed-loop performance for the position
control of a very #exible beam with an IMC feedback control architecture. Even with a very
small di!erence between the natural frequencies of the actual plant and of the plant model,
the closed-loop response of the IMC feedback control system could su!er from ringing and
a reduced tracking performance. The di$culty of implementing a practical IMC controller
for a very lightly damped beam can thus be seen to be associated with the extreme precision
of the coe$cients of the IIR "lter for the plant model. In addition, a very large FFT point as
well as long-time measurements of input and output signals for the identi"cation of the
plant are necessary to reduce the misalignment problem in the calculation of GK (z) and=(z).
It may be possible to reduce this misalignment by using on-line identi"cation of the plant
response and iterative re-design of the control "lter, although it should be noted that the
beam used in these experiments did have unusually light damping for practical engineering
structures and many of the practical problems encountered would be avoided if a beam with
a somewhat higher damping had been used.
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6. CONCLUSION

This paper describes the design, simulation and implementation of an active position
controller using internal model control (IMC) for setpoint tracking control of a smart
#exible beam. The smart #exible cantilever beam was activated by a pair of piezoceramic
actuators bonded at the clamped end on both sides of the beam. The objectives of the
position controller for the smart #exible beam were to eliminate its long natural response,
due to the very low damping ratio of the beam material, and to maintain a low steady state
error by inverse control of the non-minimum phase plant. The optimum performance of
a feedback control system was obtained by using quadratic optimization techniques based
on the minimization of the mean-square tracking error. However, the smart beam could be
perturbed by a temperature variation or the variation in the mass attached to the beam's
tip. The robust stability was considered for perturbed plants. The performance and stability
of the digital IMC feedback controller were compared with those of the analogue
proportional integral derivative (PID) feedback controller. The digital IMC feedback
control showed much better performance in settling time than that of the analogue PID
feedback control. The analogue PID feedback controller was very robust but gave poor
performance. The introduction of a modelling delay D into the design of the IMC control
"lter =(z), gave a better performance and greater robust stability to the IMC feedback
control system. An adaptive "lter using the "ltered-x LMS algorithm could also be used as
a position controller, however, a very long adaptation time was required to learn the
behaviour of the lightly damped #exible beam. In a practical implementation of the IMC
position control, even a very small misalignment between the natural frequency of the
actual plant and the anti-resonance frequency of the control "lter could cause a ringing
motion and a reduced tracking performance. However, a much faster settling was achieved
with real-time digital IMC control than with analogue PID control.
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